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1. INTRODUCTION.

Recert advances in microcomputer technology have generated renewed

interest in the design and implementation of sampled-data control systems,

a subject area with an already mature and well-developed theory 1 '2  The

introduction of digital flight control systems into modern aircraft, for

example, has for the past several years been receiving considerable atten-

tion. 3 6  The compactness, flexibility, accuracy, and reliability of

4. flight control computers make them ideally suited for the exacting guidance

and control requirements of high speed flight environments. Desired future

Wfull-scale integration of the diverse control functions of aircraft sub-

systems will necessitate efficient utilization of digital processors.

Accordingly, this discussion focuses upon a simple, direct, and computa-

tionally efficient signal tracking approach to the digital control of

multivariable linear systems.

Signal tracking has, of course, provided an effective design criterion

for a variety of practical control problems. The popular linear quadractic

regulator 7 permits the close tracking of reference variables (set points)

which are constant over relatively long periods of time while at the same

time constraining the amplitudes of control inputs. The MRA techniques

surveyed by Landau8 have as their common objective the minimization of

deviations between reference and controlled system outputs through the

adjustment of system parameters and various gain matrices. Kuo, Singh,

and Yackel9'10 have employed output matching at sampling instants to digita-

lize the control of continuous feedback systems. Mehra4'5'11 has used

output matching, in conjunction with an impulse response plant representation,
to drive system outputs to desired set points along constructed nonlinear
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This paper presents a state space output matching approach to the

digital control of continuous multivariable linear systems. The control

strategy adopted relies simply upon the sequential generation of digital

inputs which force system outputs to closely track prescribed trajectories.

The problem formulation is quite general and is very similar in flavor to

that of Mehra. It provides, as will be seen, an alternate approach to the

problems considered in references 4 and 9. The control technique developed

relies upon only the most elementary principles of linear systems theory

and hence is characterized by its conceptual and computational simplicity.

2. THE CONTROL PROBLEM.

Consider the sampled-data feedback control, as depicted in Figure 1,

of the time-invariant dynamical system

I(t) = Ax(t) + Bu(t)

(1)

y(t) = Cx(t) + Du(t), x(O) = xO.

Here T > 0 is the sampling period, x(t) eR n, y(t) e IW, z(t)-ele

r Reference z(+))Dgtl uk)iA+uyt ~T,r Signal Digital Y-Cx+kT•Geneao Control lerIt _

Oberver

Figure I - Sampled-data Control System

I~
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r(t) e , and u(t) e R satisfies

u(t) = u(kT), kT < t <(k.l)T, k = 0,1,2... (2)

The matrices A, B, C, and D are of appropriate dimensions. For later con-

venience, if all states are observable, assume that the observer is omitted

and that x(kT) is fed back to the controller.

The function z(t) represents a desired trajectory that the plant output

y(t) is to track closely. It may be the output of a dynamical system as

predicted by its model driven by r(t), or some other appropriately generated

signal. However z(t) is specified, it is assumed that z((k+l)T) is known

at t = kT (See Figure 1). Close tracking is insured here, as in references

4, S, 9-11, by determining a control variable sequence u(O), u(T), u(2T),...

that insures close matching of the components yi(t) and zi(t) at t - kT,

k - 0,1,2,...

As will be seen, in the absence of control constraints, the solution

of the control problem considered reduces simply to determing optimal con-

stant gain matrices F and G and a sequence of vectors c(kT) for the control

system of Figure 2. This, of course, is the attractive form of a standard

linear feedback control system.

Reference z(+))uk ~T
L Trajectory F(~lT u .J H MW l u _-AX Bu y(t) kT

Generator + J ... .. y=Cx Du

I Observer

Figure 2 -Constant Gain System



3. OPTIMAL CONTROL STRATEGIES.

Since controls u(t) in (2) are piecewise constant, solutions x(t) of

(1) satisfy the difference equations

x((k+l)T) = tx(kT) + eu(kT), k = 0,1,2,... , (3)

where

ATe T eA(Tx) Bd
lo 0 e A T  and e dr . (4)

0

Using these equations, a precise formulation of the output matching control

problem of section 2 is easily given. Specifically, at each sampling

instant t = kT, k > 0, given y(kT) and z((k+l)T), consider the unconstrained

minimization of

II

J(u(kT)) = lqi[z ((k + l )T) - yi((k + 1 )T) 2

(5)

= g i q (z ( (k.)T) - C x(kT) - (C.O+Di) u(kT)]

Here qi > 0, 1 < i < 1, C. and Di are the i
th rows of C and D respectively,

and x((k+l)T) is given by (3). The control u(t) determined through (2) by

the v=riables u(O), u(T), u(2T),... which minimize the functions J(u(kT))

sequentially, k = 0,1,2,..., will be said to be optimaZ. If the more typical

problem of minimizing I J(u(kT)) is considered, then the strategy considered
k>O

here clearly may be suboptimal. However, if the plant is sufficiently

responsive and T is sufficiently small, the minimization of J(u(kT)) should

provid, desired close tracking of z(t).

*'L~ .~ 4
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Consider the minimization of J(u(kT)) when all states are observable

and controls are waconstrained (Figure 1 with the observer omitted and x(kT)

fed back). In theory, perfect output matching (J(u(kT)) - 0 for all k)

can be achieved if and only if the equations

(CO + D)u(kT) = z((k+l)T) - C~x(kT) (6)

have a solution (cf. Kuo, Singh, and Yackel9). If a solution exists and if

rank (CO + D) = r, then there exists a permutation a of the indices

{1,2,...,m},with c(i) < a(i+l), and matrices M and N such that

u kT) = MMz((k+l)T)- C*x(kT) -N u  (kT)  
(7)

L (kT) Au() CkT)

This follows from the row reduction of r linearly independent rows of

C9 + D. For r < m, N consists of columns ct(r+l), c(r+2),..., a(m) of CO * D.

The values of the variables ua(i) (kT), r + 1 < i < m, may be conveniently

assigned arbitrarily. Thus, the solution vector u(kT) may be written

u(kT) - F z((k+l)T) - Gx(kT) - c(kT). (8)

The rows F (i) of F are given by Fa(i) = Mi for I < i < r, and F 0(i) 0

otherwise. The matrix G is given by G = FCO and, letting

T
c' (kT) ' *N[Ux(r+l) (kT),... ,u (m)(kT)] , the correction vector c(kT) has

co(i) CkT) = cci ) (kT), I < i < r, and ca(i) (kT) - -u a(i)(kT) otherwise

(superscript T denotes transpose). If r - m, F=-= (CO + D) I and c(kT) E 0.

Importantly, F and G (and effectively the vectors c(kT), since uc(i)(kT),

r + I < i < m, is arbitrary) are independent of k. The optimal control

u(t) therefore has the constant gain configuration indicated in Figure 2.

7 7 l i ....
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More generally, if equations (6) have no solution, J(u(kT)) may be

minimized directly. A necessary and sufficient condition for its uncon-

strained minimization, since it is convex in u(kT), is VJ(u(kT)) 0 0. This

cindition reduces simply to

(Ce D) Q(CG + D)u(kT) (C Gce D) Q(z((k+I)T) - Ctx(kT) M

where Q . (qij) with qij 6 6ijq. (6.j 1 1, 1 = j, 6ij 0 0 otherwise).Solutions

of (9) can be written in the form (8). If equations (6) are solvable, then,

in view of the convexity of J(u(kT)), the solution spaces of (6) and (9)

coincide. Obviously then, attention may be restricted exclusively to

equations (9).

When unobservable states are present, an asymptotically stable digital

observer defined by

x((k+l)T) =0 2(kT) +Gu(kT) +G[y(kT) -C2(kT)], k=O,1,2,..., (10)

is employed. In this case, y may be controlled most directly by minimizing

J(u(kT)) under the assumption of complete observability, and then substituting

the estimate (kT) for x(kT1 in (8). Alternatively, the observer output

9((k+l)T) - Ck((k+I)T) may be substituted for y((k+l)T) in (5), with

x((k+l)T) given by (10). The altered J(u(kT)) may then be minimized as j
before. The optimal control again assumes the basic form (8), but with (kT)

replacing x(kT) and an additional term Hy(kT) present due to the dependence

of y((k+l)T) upon y(kT). Obviously, the effectiveness of either of these

control schemes depends upon how rapidly x(kT) converges to x(kT), "s k

increases, for given initial conditions x(O) and x(0).

Remarks

3.1 Exact output matching can in general be achieved only when I < a, that
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is, only when there are at least as many control variable degrees of freedom

as there are controlled variables. In practice, if Z = m, one expects

(6).to possess a unique solution, implying that CO + D is invertible, and

hence that c(kT) B 0 in (8). If Z < m, one expects that the values of m -

control variables may be assigned freely, so that,-in general, c(kT) A 0.

Similarly, multiple solutions in (9) are expected when L < m, and a unique

Tsolution when L > m. The later implies that the matrix (CO + D) Q(CG + D)

is invertible, clearly a desirable property.

3 3.2 Because J(u(kT)) is continuous, it will always possess a constrained

minimum if constraints a. < u (kT) < b. are imposed. This minimum can be

jdetermined numerically on each sampling interval using standard nonlinear

programming algorithms. As in regulator problems, constraints may also be

imposed through the minimization of J(u(kT)) = J(u(kT)) +u(kT)TR u(kT), R > 0.

Equating V(u(kT)) to zero, a system of linear equations for the components

of u(kT) results with solutions again of form (8). Alternatively, constraints

may be effectively imposed in some cases, as when transferring outputs to

set points, by selecting only those paths z(t) which require bounded control

energy for close tracking.

3.3 The derivations of equations (6) and (9) are based simply upon the

difference equations (3) which solutions of (1) with controls (2) satisfy.

These equations are valid more generally if A - A(t) and B a B(t) are

matrices of measurable functions which are bounded on finite intervals (see

Coddington and Levinson1 2). In this case, however, * - *(k) and 8 G 0(k)

depend upon k. Consequently, the coefficient matrices in (6) and (9) and

hence the gains F - F(k) and G a G(k) in (8) also depend upon k. Tho on-line

implementation of the control scheme discussed here may then present serious

computational difficulties. This is particularly true if T is very small,



since the matrices of integrals t(k) and 9(k). must be computed and a system of

linear equations (6) fr (9) must be solved at each sampling instant t - kT.

Moreover, if unobservable states are present, the additional problem of

choosing gains G - G(k) so that x in (10) is asymptotically stable must be

addressed.

4. NUMERICAL EXAMPLES.

Example 1. A model following problem.

Let a one dimensional plant be described by the state and output

equations

(Ct) X (xt) + U (t)
(11)

y(t) = x(t)

Let the equations of a second reference system be

4() [q(t) * r(t) .(12)

Consider the problem of finding a control uCt) of form (2) that forces y(t)

to match z(t) - q,(t) closely at sampling instants.

In (6), CO + D •"(T-T)dT = - e T so that exact output matching
0

can be achieved using u(t) determined by

u(kT) a Fz((k.l)T) - Gx(kT) (13)

with

Tand G a-y. (14)
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Figure 3 shows z(t) and the piecewise exponential function y(t) as con-

trolled by (13) and (14). Here T = 1, r(t) is a unit step function, and

x(O) = q(0) - 0.

If only q2 (t) were observable in (12), it would be necessary to equip

q(t) with an observer

q((k+1)T) = Oqq(kT) + Oqr(kT) + Gq[q 2 (kT) -q 2 (kT)] ,

where

q3F571074 .444476 q [.628926 [289579and q 1
-.888951 073402 .888952 G L.297672

(See Kuo1 for digital observer design.) Letting z(t) ql~(t), y(t) could

then be matched to ql(t) using (13) and (14). A control simulation in this

4 situation is pictured in Figure 4. T, r(t), and x(0) and q(O) are as above.

The simulation begins with q(0) = 0. At t = 3 it is assumed that the actual

state q(t), evolving according to (12), is subjected to a disturbance which

-sults in q,(3) = ql(3") + .2 and q2(3) = q2(3") + .3. Figure 4 illustrates

the convergence of y(t) to ql(t) as (kT) converges to q(kT) from (3) =q(3-).

Since J(u(kT)) is convex in a single variable, it is easily minimized

subject to the constraint a < u(kT) < b. Clearly, if VJ(m) - J'(a) i 0,

to minimize J(u(kT), choose u(kT) = a if a < a < b, and choose u(kT) f a

if a < a and u(kT) = b if a > b. Figure S shows the example of Figure 4

simulated subject to the constraint 0 < u(kT) f I.

Example 2. A digital redesign probZem.

Kuo, Singh, and Yackel9 consider the problem ofO converting a continuous-

data control system into a sampled-data system while preserving the



10

performance characteristics of the original system. Sample and hold devices

are inserted into the continuous system and its input and feedback gains are

modified. The modifications insure that linear combinations of the plant

states of the resulting sampled-data system match the same combinations of

states of the original system exactly at all sampling instants.

The output matching technique of section 3 may also be applied to the

digital redesign problem. To illustrate this, consider the simplified

one-axis Skylab satellite control system of reference 9 with plant equations

4(t) = I q(t) + 1 u(t) , q(O) 0 (15)

_0 0 970,741

and control

u(t) E(O) r(t) G(O) x(t). (16)

The scalar input r(t) is taken to be a unit step fun'tion, and the input

and feedback gains E(O) and G(O) are

E(O) = 11,800 and G(0) = [11,800 151,800]

Given a I x 2 matrix C, formulas for modified gains E(T) and G(T) are derived

in reference 9 with the property that if qd(t) is the solution of (15) with

u(t) given by

u(t) - E(T) r(kT) - G(T) x(kT), kT < t < (k+l)T, k = 0,1,2,...,

d
then Cq (t) and Cq(t) match exactly at all sampling instants.

Let x(t) represent the solution of (15) if u(t) is of form (2), while

q(t) is the solution with control (16). The difference equations (3)

satisfied by x(t) are
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Fi T] T2  1
x((k+T)T) j 24T u(kT), x(0)=0, k=0,1,2,... (17)

970,741

Given a 1 x 2 matrix C, in the framework of section 3, the redesign goal is

to determine a control (2) which insures the close matching of y(t) = Cx(t)

and z(t) = Cq(t). By (6), if the scalar CO $ 0, y(t) and z(t) may be matched

exactly at sampling instants using (13) with gains

F = (CO) - and G = (CO) -c . (18)

d
This is the same result derived in reference 9 for the matching of Cq (t)

and Cq(t).

Reference 9 discusses in detail the cases C = I O1 and C = [0 11,

with T = 2. The corresponding gains (18) for these cases are

(19)

and G 1I 1:2 C to 11 b{0 2 C [0 1]

where 0 [01 02 . Since both redesign strategies provide exact output

matching, the simulation results for the above choices of C are identical

for each method. Figures 4 - 13, reference 9 (or Figures 6.19 - 6.24, Kuo 1

illustrate these results. Although both states of (15) are matched well

for each choice of C, it is seen that better simultaneous matching of

states occurs when C = [0 1].

Kuo, Singh, and Yackel consider the digitalization of the control of

a continuous plant (I) in the case 9 - m. (C here is the matrix H of

reference 9.) More generally, the output matching technique presented here

applies to the digital redesign problem when t and m are arbitrary. As
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indicated in section 3, when D = 0, a practical condition permitting exact

output matching is the existence of (Ce) 1. This is the same condition

given in reference 9 for the case I = m.

To illustrate the more general problem, letting C I, the identity

matrix, consider the S7yZab satellite with z(t) Cq(t) q(t). For

control, minimize the weighted sum

2- 21 2
J (u (kT)= q, [q1 (k+ 1)T) - x ( (k 1)T)] z- q2 ((k+l)T) -x2((k+l)T)

From (9), gains F and G for the optimal control (13) are given by

T -1

controlled through (13) and (20) with T = 2, q= 2, and q 1. As can be

seen, close matching of both states simultaneously is provided. (The

results are effectively unchanged when q- = 1 and q= 2, or when ql q2
- 1.)

In fact, when the actual data is analyzed, slightly better simultaneous

matching is provided by C = I than by either C = [1 01 or C = [0 1].I To illustrate the incorporation of the digital observer of Figure 2

into the control scheme, consider the problem of matching q2 (t) and X2 (t)

when only xl(t) is observable. Equip x(t) with an observer (10) with gain

TG = (2 I/T]T . For control, use (13)and (19) with C u [0 1], but with (kT)

replacing x(kT) in (13). A control simulation under these conditions is

illustrated in Figures 9, 10, and 11. Here again T = 2 and q(O) - x(O) = 0.

It is assumed that xl(0) a 0, but that the initial estimate x2(0) .1 is in

error. Since x(kT) effectively converges to x(kT) after 2 sampling periods,

x(t) and q(t) are closely matched for t > 6.



13

Example 3. A flight control exVZwe.

In Reference 4, Mehra, (et al) applies the Model Algorithmic Control

(MAC) technique to the attitude control of a hypothetical missile. The

three axis model, with independent pitch axis and coupled roll-yaw dynamics,

is described by the state equations

x I Z 1 0 0 0 0 x1  0 0 0

2 MO 0 0 0 0 0 x2 + 6q 0 0 UJ

x50 0 YB a -1I v1COSO x5  0 0 0 u

-- V 1 3 (2i
i'4 0 0 L3 -.4-6p 0 -TL 6p x 4  0 L L6p 0 U

5 S 0 0 N 0 0 0 xS 0 0 NSr

_ 6 0 0 0 1 0 0 _x 6  _ 0 0 0 _

The output, state, and control variables are

Y= x1 = angle of attack

x2 = perturbed pitch rate uI = elevator angle

= x3 = sideslip angle u = aileron angle

x4 = perturbed roll rate u3 = rudder angle

x5 = perturbed yaw rate

Y3 x6 = roll angle

Angles are measured in degrees.

With the missile flying at Mach 2 at 20,000 ft. and weighing 239.5 lb.,

the parameters in (21) have values
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Z = -1.4868 N = 290.48 v * 2174.21w0

M = -149.93 = .15708 0= 0

Y = -.91237 L = 8770.6 M6q= -281.11

L = -1559.2 g 3 32.0 N~r = 281.11

Under these conditions, consider the problem of transferring the outputs

Yl(t), y2 (t) and y3 (t) smoothly from given initial values to constant set

points c ,, c2, and c3 along desired trajectories zl(t), z2 (t), and z3 (t)

respectively. Letting C be defined so that y(t) = Cx(t), the matrix CO is

may be achieved using u(t) defined through (13) with

-.846826 0.0 0.0 1

F 0. .067512 5.269492 (22)

10. 0 -.938841. .080139_

and
--. 223S62 -. 060463 0.0 0.0 0.0 0.0

G 0.0 0.0 -. 107461 .001085 .003071 4.769538 (23)

0.0 0.0 .014207 .000023 .052151 .080906

"As a particular example, let z i(t) be defined at sampling instants by

zi(kT) - yi((k-I)T) + (1-a)ci , i-1,2,3, k-1,2,..., (24)

for constant a, 0 < a < i. (The output matching technique requires only

that z(t) be specified at t - kT.) Figures 12 and 13 show a simulation of (21)

as controlled through (13), (22), and (23) with desired trajectories (24) and

set points cI  1e , C2  a 10t and c( i- 0 . Here x(O) a , T .1, a a .S,

and control action begins at t - S (i.e., z(kT) 0 , and hence u(kT) a 0,



0 < k < 5, and z(kT) is given by (24) for k > 6).

The rapid oscillations of u(t) and y(t) every .1 seconds apparent in

Figures 12 and 13 are clearly undesirable. Smoother control of (21) can

be realized if more than one future value of y(t) is considered in each

control computation. As an example, suppose that at t - kT, u(t) is to be

held constant at value u(kT) for two sampling periods. Consider the mini-

mization of the two step ahead matching criterion

1 2+1 3

J(u(kT)) A I [zli((k+l)T) - yi(Ck+l)T)] * l [z2((k+I)T) - y((k+2)T)]2  (25)2jlii2u i=1
iu 1 i

where for j - 1,2, zi((k+l)T) zi((k+l)T) as defined through (24) with a -a,

a > a2 Since

'- jT

y ((k~j)T) = ceA(jT)x(kT) +C[ eA(jT-x) u(kT), j- 1,2,
a~0

J(u(kT)) may be minimized by solving the linear equations VJ(u(kT)) = 0.

The solution of these equations may be placed in the form

u(kT) - F1zl((k+l)T) + F2 z 2((kl)T) -Gx(kT) (26)

for appropriate gains FI, F , and G. Simulations of the control of (21)

using controls u(t) determined sequentially through (2) by the u(kT) in (26)

(i.e., u(kT) is appZied on only one sampling interval) reveal a marked

smoothing of u(t) and y(t). ((25) effectively imposes rate contraints upon

the components of y(t) as well as positional constraints.) The simulation

with ct 1 .75, a2 - S, and x(O), T, and the ci as previously specified is

pictured in Figures 14 and 15. As can be seen, the components of u(t) and

y(t) converge quickly and smoothly to steady state values. The gains

F1 , F2 , and G in (26) for this example are
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-.1103S2 0.0 0.0 1285081 0.0 0.0

F 0.0 .127214 1.135150 F 2  0.0 -.175194 2.164551 (27)

0.0 -.239291 -.002336] , 0.0 -.408877 .004776 ,

and,

104394 -.028234 0.0 0.0 0.0 0.0 1
G = 0439 0.0 -.0228S3 .000639 -.000910 2.799690 (28)

0.0 0.0 .363652 .00001S .007SS7 .002551 .

R. K. Mehra and others (see references 4, 5, 11, and 13) have employed

output matching extensively in the control of linear plants with impulse

response representation

X N
y ((k+1)T) = [  a(n)..u.((k~l-n)T), i = 1,21.... . (29)

Sj-1 n=1

Letting zi(kT), k a 1,2,..., be a discrete exponential path to the set

point ci, the basic impulse response technique matches yi((k+1)T) to

zi((k+l)T) using

2. N

u(kT) K -v(k), vi(k) -zi((kI)T) - , a(n). u.((k.-n)T) (30)

jal na? ij

where K a (kid) has k i = a(l)i.. Figures 33 a, b, reference 4, show a

simulation of the control of (21) using this method with zi(kT)

a e-Iy((k-l)T) + (l-e I)c, c1 = 100, c2 a ISO, c3 * 0a 
. The state space

model (21) was used to generate the impulse responses a(n)i, .

Figures 33 a,b and Figures 12 and 13 here demonstrate essentially

equivalent control effectiveness since the desired output trajectories are
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similar for both examples and each method provides exact output matching.

(The rapid output oscillations of Figures 12 and 13 are absent in Figures I
33 ab. Evidently, linear interpolation has been used to approximate y(t)

between the data points generated by (29) and (30). Figures 12 and 13 were

constructed using 20 data points in each sampling interval, thus revealing

the intersample behavior of the continuous plant (21).) From a computational

point of view, however, the state space approach offers the following

advantages. Each control computation in (13) with gains (23) requires two

matrix-vector multiplications and a vector subtraction using the stored

gains (system constants) F and G. Each computation in (30) requires a series

of scalar multiplications and additions (to determine v(k)), followed by a

matrix-vector multiplication, using the system constants a(n).. and K and

past control actions u.((k+l-n)T), ij a 1,2,3, n = 2,3,...,N. Table I

compares the computational requirements of the two control methods.

Methods System Constants Algebraic Operations/u(kT)

State Space m(£+n) = 27(15) m(21+2n- 1) =Sl(27)

Impulse Response (N-1)12 + m = 450(250) Z2(2N-3) +t1 m(2U-l) = 891(495)

Table 1 - Missile Control Computational Requirements.

(Since the value of N employed in reference 4 is not specified, it is assumed

that N 50 as in reference 11.) Due to the decoupling of states xI and x2

1 2from x3 - x6 in (21), the matrices F and G in (22) and (23) and F1 , F , and G

in (27) and (28), and correspondingly the matrix K-1 in (26), are naturally

partitioned. Taking this into considerationthe actual computational

requirements, given in parentheses in Table 1, are the same as the total

requireaents for two and four-dimensional problems considered separately.
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(E.g., 3(3+6) a 27 while 1(1+2) + 2(2+4) IS.) As can be seen, the state

space approach requires significantly fewer parameters to define control with

correspondingly fewer computations per control calculation. (Given arbitrary

plant equations (1) with I - m and corresponding impulse response representa-

tion (29), the formulas in Figure 16 remain in general valid. It is

2 2interesting to note that m (2 + 2n - 1) < m (2N - 3) + m + m(2m-1) whenever
2n-1S> .Jor N = 50, this implies that the state space technique requires

fewer operaticns per control computation roughly as long as M > * that is,

as long as there is at least one output for every SO states.)

As a final comparison, in order to produce control sw.othing, reference

4 introduces matching at multiple sampling instants through control blocking.

A gradient search algorithm is applied to the nonlinear optimization problem

which results. Simulation results using this approach are shown in Figures

34, 37, and 38, reference 4. These figures show smoothing comparable to that

of Figures 14 and 15. The minimization of (2S) through (26), however,

yields improved system performance without introducing additional computa-

tional complexity.

V.. CONCLUSIONS

A simple, direct, and quite general output matching approach to multi-

variable linear digital control has been presented. Digital inputs which

force plant outputs to closely track desired reference trajectories are

generated sequentially by controls with constant forward and feedback gain

configuration. Optimal gains are determined using only elementary results

from linear algebra and linear systems theory. As a result, the control

technique discussed is characterized by its conceptual and practical simplicity.
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Applications of output matching to problems in model following, digital

-redesign, and direct digital design have demonstrated its flexibility, ease

of application, and effectiveness. Control effectiveness, of course, depends

upon sample rate and desired output trajectory selection. An intersample

smoothing strategy promises to provide improved performance without increased

sampling rate or additional computational expense. Since each linear plant

possesses its own specific dynamical characteristics, it is felt that in

application, only experimentation will ultimately reveal those best choices

I of sampling rate and reference trajectories for given standards of acceptable

system performance.

I:

: I ii - -..... ..? i . ,,i .i, ~ i ..
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Figure 7. q 2(t) and x 2(t), Example 2; average matching of states, q, 2, q 2 -
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Figure 8. Control functions, Example 2; average matching of states, 2 2, -

Co,,~ntinuous control u (tI given by (16), digital cnr)u (t) defined through (13) and (2
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Figure 9. q,(t) and x (t), Example 2; q 2(t) and x2(t) matched, x2(t) unobservable.
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f1gur. 10. q 2 (t) and x 2(t), Example 2; q2(t) and x2(t) matched, YO(t unobservable.
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u (t)
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Figure 1. Control functions, Example 2; q2 (t) and x (t) matched, x2 (t) unobservable.

Continuous control Uq (t) given by (16), digital control ud(t) defined through (13) and (19).
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Figure 12. xl(t), x3 (t), and x6 (t), Example 3.. 3
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Figure 13. u, (t), u 2( W and u 3(t), ExamplIe 3.
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Figure 15. u1(t), u2(t), and u 3(t), Example 3; control smoothing approach.


